Get Latest CSE Projects in your Email


Strategies for Comparing Metabolic Profiles: Implications for the Inference of Biochemical Mechanisms from Metabolomics Data

Large amounts of metabolomics data have been accumulated in recent years and await analysis. Previously we had developed a systems biological approach to infer biochemical mechanisms underlying metabolic alterations observed in cancers and other diseases. The method utilized the typical Euclidean distance for comparing metabolic profiles. Here we ask whether any of the numerous alternative metrics might serve this purpose better.

Methods and Findings:
We used enzymatic alterations in purine metabolism that were measured in human renal cell carcinoma to test various metrics with the goal of identifying the best metrics for discerning metabolic profiles of healthy and diseased individuals. The results showed that several metrics have similarly good performance, but that some are unsuited for comparisons of metabolic profiles. Furthermore, the results suggest that relative changes in metabolite levels, which reduce bias toward large metabolite concentrations, are better suited for comparisons of metabolic profiles than absolute changes. Finally, we demonstrate that a sequential search for enzymatic alterations, ranked by importance, is not always valid.

Conclusions:
We identified metrics that are appropriate for comparisons of metabolic profiles. In addition, we constructed strategic guidelines for the algorithmic identification of biochemical mechanisms from metabolomics data.
Source: IEEE
Author: Zhen Qi, Eberhard Voit

Download Project

For Free CSE Project Downloads:

Enter your email address:
( Its Free 100% )


Leave a Comment

Your email address will not be published. Required fields are marked *